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ABSTRACT 
2 9 3 9 7  

Some theo re t i ca l  and experimental developments of t h e  l a s t  decade are 

discussed with emphasis on techniques t h a t  can be used t o  ca lcu la te  viscosity,  

thermal conductivity, and diffusion coeff ic ients  assuming appropriate interatomic 

01' intermolecular force  l a w s .  Three main top ics  are considered: F i r s t ,  i n t e r -  

molecular po ten t ia l  energy functions f o r  which co l l i s ion  in tegra ls  are now ava i l -  

able; second, heat conduction i n  chemically react ing gases; and f ina l ly ,  a closely 

related topic ,  t h e  heat conductivity of polyatomic gases. - 
INTRODUCTION 

This paper considers t heo re t i ca l  and experimental developments concerning 

t h e  t ransport  propert ies  s ince about 1954; i n  other  words, s ince t h e  publication 
I 

of "Molecular Theory of Gases and Liquids" by Hirschfelder, Curtiss, and Bird , 
which e f f ec t ive ly  summarizes most pr ior  work. Furthermore, t h e  discussion i s  

l imited t o  techniques tha t  have engineering usefulness - techniques t h a t  can be  

used t o  ac tua l ly  compute transport  properties algebraically.  

Thus, t h r e e  main top ic s  are discussed: F i r s t ,  t he  co l l i s ion  integrals ,  

basic  t o  t ransport  property calculations, t h a t  are now avai lable  f o r  a wide 

v a r i e t y  of intermolecular force laws; secondly, heat conduct ion i n  chemically 

react ing gases followed; f inal ly ,  by considerat ion of a closely r e l a t ed  subject, 

t h e  thermal conductivity of polyatomic gases. 

In  general  t h i s  review w i l l  make reference t o  t h e  l i t e r a t u r e  ra ther  than 

presenting computational methods as such. Equations w i l l  be avoided except 

insofar  as they  serve t o  i l l u s t r a t e  t 
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i n  order t o  car ry  out any ac tua l  calculations, t h e  reader must consult t h e  

l i t e r a t u r e ,  

POTENTIAL ENERGY FUNCTIONS AND THE COLLISION INTEGRALS 

The rigorous Chapman-Enskog theory y i e lds  t h e  following expressions f o r  t h e  

t ranspor t  propert ies  of d i l u t e  monatomic gases2: 

V i s  cos it y 

Thermal conductivity 

Self-diffusion coef f ic ien t  

These formulas involve quan t i t i e s  such as t h e  atomic mass m, t h e  Boltzmann 

constant 

p, which are w e l l  known. However, t h e  formulas also contain cross  sections, or  

more properly c o l l i s i o n  in t eg ra l s  u R ( 2 j  ')* and u2Q(1' 'I*, and t o  compute 

these  t h e  intermolecular force  l a w  must b e  known. 

For a sphe r i ca l ly  symmetric potential, which may be wr i t ten  i n  a dimension- 

k, t h e  temperature T, t h e  heat capacity cv (= 2 k), and t h e  dens i ty  

less form as 

t h e  c o l l i s i o n  i n t e g r a l s  are obtained by a t r i p l e  integrat ion.  (Here E i s  an 

energy and u is  a dis tance charac te r i s t ic  of t h e  po ten t i a l . )  F i r s t  it is  

necessary t o  compute t h e  angle of def lect ion:  
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X(g*,b*) = R - 2b* 

m 

where b* = b/a is  the  reduced impact parameter. (The impact parameter b is 

t h e  d is tance  of c loses t  approach i n  t h e  absence of the  po ten t i a l  cp. ) Further, 

= rm/ts, where rm is the dis tance of c loses t  approach i n  the presence of 

t he  potent ia l ,  and g*' = mg2/c  is the reduced r e l a t i v e  k ine t i c  energy (g 

is the i n i t i a l  relative speed of t h e  col l iding molecules). 

Once the angle of def lec t ion  has been obtained as a function of g* and b*, 

a velocity-dependent cross  sect ion is computed: 
n o a  

&"(g)* = 2 (1 - cos2X)b*db* F - L A J  2 1 + 2  

Final ly ,  the  Q are averaged over a l l  ve loc i t ies ,  w i t h  an appropriate  

weighting factor :  
no0 

Thus t h e  c o l l i s i o n  in t eg ra l s  

W 3 kT/E. 

Q R ( 2 ' s ) *  are a function of reduced temperature 

The purpose of presenting Eqe. (5) - ( 7 )  is t o  show the  manner i n  which t h e  

po ten t i a l  energy cp influences t h e  t ransport  propert ies .  The po ten t i a l  appears 

e x p l i c i t l y  i n  t he  integrand f o r  t h e  angle of def lec t ion  and is then averaged by 

three integrat ions.  Consequently, the  c o l l i s i o n  in t eg ra l s  are insens i t i ve  t o  

t h e  details of t h e  intermolecular potent ia l ,  and we cannot expect experimental 

t ranspor t  property measurements t o  provide much information about t he  force  l a w .  

To put it another way, t he  experimental da t a  cannot be used t o  determine the  
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potential;  t h e  data can only be used t o  ve to  candidate potent ia ls .  

For most po ten t i a l  energy functions EQs. (5) - ( 7 )  m u s t  be evaluated numeri- 

The first such calculat ions for a r e a l i s t i c  force l a w  - t h e  Lmnard-Jones cally.  

(12-6) po ten t i a l  - were car r ied  out independently by four  d i f f e ren t  groups 

Furthermore, t h e  Wiscomin graup5 showed that experimental v i scos i ty  data  could 

be f i t  rather w e l l  t o  y ie ld  molecular constants u and E i n  reasonable agree- 

ment w i t h  corresponding parameters obtained from equation of s t a t e  data. 

3- 6 . 

The Lennard- Jones ( 12- 6 ) pot ent  i a l  

L 

combines an inverse s i x t h  power a t t r a c t i v e  po ten t i a l  w i t h  an inverse twe l f th  

power repulsion. 

forces,  but t h e  twelfth power repulsion was chosen merely f o r  mathematical con- 

venience. In  view of t h e  considerable success of t h e  Lennard-Jones (12-6) 

p o t e n t i a l  it i s  not surpr is ing that the  next s t ep  was t o  bui ld  some f l e x i b i l i t y  

i n t o  the repulsive pa r t  of t h e  potent ia l .  This was accomplished by introducing 

an exponential repulsion i n  place of the inverse t w e l f t h  power repulsion; t h e  

c o l l i s i o n  in t eg ra l s  f o r  these potentials,  shown i n  Fig. 1, have been computed 

by Mason 7 j 8 .  

purposes of comparison. 

The a t t r a c t i v e  portion has a theo re t i ca l  basis i n  t he  dispersion 

The Lennard-Jones (12-6) po ten t i a l  i s  a l s o  shown i n  Fig. 1 f o r  

The exponential-6 poten t ia l  serves very w e l l  f o r  t h e  noble gases and other  

molecules that are approximately spherical .  Figure 2 shows experimental v i scos i ty  

data f o r  argon over a wide temperature range; a curve computed f o r  r i g i d  e l a s t i c  

spheres i s  shown as a dashed l ine .  The po ten t i a l  functions are a l s o  shown i n  

Fig. 2. The exponential-6 po ten t i a l  has been chosen’ t o  take  account of equa- 

t i o n  of s t a t e  and c r y s t a l  propert ies  as w e l l  as v iscos i ty  coef f ic ien ts .  For 
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example, the interatomic dis tance i n  so l id  argon is 3.8 Angstram9 - j u s t  ins ide  

of t h e  minimum of t h e  po ten t i a l  energy curve. The same po ten t i a l  a l s o  provides 

a sa t i s f ac to ry  explanation of t h e  thermal conductivity (Fig. 3) and self- 

d i f fus ion  coeff ic ient  (Fig, 4)  f o r  argon. 

Since t h e o r e t i c a l  calculat ions have been very successful i n  describing t h e  

t ransport  propert ies  f o r  valence-saturated nonpolar gases, it is not  surpr is ing 

that t h e  co l l i s ion  in t eg ra l s  have now been computed f o r  po ten t ia l s  appl icable  t o  

other sit uat ions. 

Molecules possessing permanent dipole moments have an intermolecular po ten t ia l  

t h a t  is not spher ica l ly  symmetric. 

t h e  po ten t i a l  that depends on t h e  or ientat ion of t h e  dipoles and t h e  inverse 

cube of t h e  intermolecular separation. 

molecules is the Stockmayer po ten t i a l  

The dipoles give rise t o  a contribution t o  

A n  appropriate po ten t i a l  f o r  such 

A 

cp = k [ ( P ,  12 - ($ + 6 ( 3 ]  

Here 6 

s t rength  of t h e  dipole  moment. It has not as yet been possible t o  ca lcu la te  

t ranspor t  propert ies  f o r  t h i s  angle-dependent po ten t ia l .  However, co l l i s ion  

in t eg ra l s  have been calculated f o r  Stockmayer po ten t i a l s  modified by assuming 6 

a constant . Theee poten t ia l s  a r e  shown i n  Fig. 5; at t h e  extremes of 6 = f2.5 

t h e  long-range par t  OS t h e  po ten t i a l  is completely dominated by t h e  inverse cube 

term. 

curve (6 = o ) . )  

is a function of t h e  angular or ien ta t ion  of t h e  molecules and a l s o  t h e  

9 

(For comparison t h e  Lennard-Jones (12-6) po ten t i a l  is shown as a dashed 

These co l l i s ion  in tegra ls  may be applied t o  polar  gases if it is assumed 

t h a t  t h e  r e l a t i v e  or ien ta t ion  of t h e  col l iding dipoles  remains f ixed through 

t h e  important pa r t  of t h e  co l l i s ion  t r a j ec to ry  around t h e  dis tance of c losest  
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approach, 

or ien ta t ions  . Computed and experimental v i s c o s i t i e s  of steam ( 8  = 1 . 2 )  are 

shown i n  Fig. 6. The f i t  of t h e  da ta  is not perfect  - the experimental data 

show a temperature dependence that is somewhat s teeper  that the t h e o r e t i c a l  

predict ion - but it is an improvement over the f i t  obtained by using a simple 

Lennard- Jones ( 1 2  -6 ) potent ial .  

The c o l l i s i o n  in t eg ra l s  are then averaged over a l l  possible  r e l a t i v e  

9 

Coll is ion in t eg ra l s  have a l s o  been computed f o r  the range of Morse po ten t i a l s  

10 shown i n  Fig. 7 . 
i n t e rac t ions  between atoms corresponding t o  chemically bound molecules ( f o r  

example, t he  k 
t h e  hydrogen molecule). 

f i t  data on nonpolar, valence-saturat  ed molecules. 

The po ten t i a l s  w i t h  the  very broad w e l l s  can be applied t o  

in te rac t ion  between two hydrogen atoms, which corresponds t o  

The poten t ia l s  w i t h  t he  narrow wells have been used t o  

Coll is ion in t eg ra l s  a l s o  have been computed f o r  a number of other  po ten t i a l s  

11 including t h e  repuls ive exponential po ten t i a l  

tures ,  as w e l l  as nonbonding interact ions between atoms o r  free rad ica ls ) ,  t h e  

shielded coulombic potent ( f o r  repulsive in t e rac t  ions i n  ionized gases),  

several (12-6-4) pa t en t i a l s l3  ( for  ion-neutral  in te rac t ions) ,  several inverae 

power a t t r a c t i v e  and repuls ive potent ials14, and a l s o  estimates f o r  t h e  a t t r a c t i v e  

exponential 

corresponding t o  bound molecular st at es ) . 

( f o r  molecules at high tempera- 

15 ( fo r  low-t empsrature in te rac t  ions between at oms o r  free rad ica l s  

Thus t h e  c o l l i s i o n  in t eg ra l s  a r e  now ava i lab le  for a wide v a r i e t y  of 

poten t ia l s .  Hence, if the  d e t a i l s  of a po ten t i a l  energy curve are known, a 

good match t o  it can be selected from the  " l ibrary"  of ca lcu la t ions  already 

a t  hand. 
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IBAT CONDUCTION I N  CHEMICALLY REACTING GASES 

A t  high temperatures pmny gases a r e  partially dissociated and undergo a 

In  reacting gases, heat t ransport  may be  con- va r i e ty  of chemical reactions. 

s iderably l a rge r  than i n  "frozen" (nonreacting) mixtures. Large amounts of heat 

can b e  car r ied  as chemical enthalpy of molecules t h a t  d i f fuse  because of concen- 

t r a t i o n  gradients. These gradients exist ,  i n  turn,  because the  gas composition 

va r i e s  w i t h  temperature. For example, i n  a gas that absorbs heat by dissociat ing 

as t h e  temperature is  raised, heat is transported when a molecule d issoc ia tes  i n  

t h e  high-temperature region and t h e  fragments d i f fuse  toward the  cooler region. 

In  t h e  low-temperature region the  fragments recombine and release t h e  heat 

absorbed at high temperature. 

When chemical reaction rates a r e  very high, chemical equilibrium can be  

assumed t o  ex i s t  l oca l ly  throughout a gas  mixture. It is then possible, by 

d i f fe ren t ia t ing  t h e  equilibrium relationships,  t o  relate t h e  concentration 

gradients  t o  t h e  temperature gradient. In t h i s  event one can def ine an equi l ib-  

rium thermal conductivity he independent of apparatus geometry: 

he = hf 9- hr (10) 

where hf i s  t h e  conductivity i n  t h e  absence of react ion ( t h e  "frozen" 

thermal conductivity) and A, is t h e  augmentation due t o  the reactions.  

A general  expression f o r  t h e  thermal conductivity due t o  chemical react ions 

hap been developed l6,l7 that is applicable t o  m i x t u r e s  involving any number of 

reactants,  i ne r t  di luent  8,  and chemical equi l ibr ia ,  provided chemical equi l ib-  

rium exists loca l ly  i n  t h e  temperature gradient.  For a simple dissociat ion of 

the type A e nB t h e  thermal conductivity due t o  chemical reaction is 

D~~ m2 X ~ X ~  hr =-- 
2 2 RT RT (mA + xB) 
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Here Dm is t h e  binary diffusion coeff ic ient  between camponents A and B, 

AH 

ponents. Note that unless both species are present, A, is zero. Furthermore, 

is t h e  heat of reaction, and xA, xB are t h e  mole f rac t ions  of t h e  com- 

s ince i n  a d issoc ia t ing  gas t h e  gas composition va r i e s  with pressure, w e  expect 

t h e  heat conductivity t o  vary with pressure also.  This is i n  contrast  t o  t h e  

behavior of nonreacting gases, f o r  which t h e  heat conductivity is independent 

of pressure. 

Experimental and theo re t i ca l  conduct iv i t  ies f o r  t h e  N204 * 2N02 system 

18 at  one atmosphere a r e  shown i n  Fig. 8 . The dashed curve indicates  t h e  frozen 

conductivity. Thus hr is t h e  major contribution t o  t h e  heat conductivity; at  

t h e  m a x i m u m  (where t h e  mass f rac t ions  of N204 and NO2 a r e  equal) t h e  con- 

duc t iv i ty  is comparable t o  t h a t  of a l igh t  gas such as helium. 

The theo re t i ca l  expression f o r  a system involving two react ions has been 
19 

t e s t e d  f o r  t h e  caBe of hydrogen f luor ide  vappr. A t  moderate pressurea t h e  

PVT behavior of hydrogen f luor ide  can be described i n  terms of a monomer-hexamer 

equilibrium, while low pressure data  suggest a dimer as w e l l .  Although t h e  

a c t u a l  state of t h e  vapor is uncertain, it appears that at low and moderate 

pressures t h e  equ i l ib r i a  

2m s ( H F > 2  

6HF -'(HF)6 

AH2 = 7.4 kcal  

AH6 = 40.5 kcal  

serve t o  specify t h e  system ra the r  well. 

Computed and experimental2' thermal conduct ivi t ies  a r e  compared i n  Fig. 9. 

The s o l i d  l i n e  was computed assuming both dimer and hexamer equi l ibr ia ,  whereas 

the dashed l i n e  was computed considering only the hexamer equilibrium. Note t h e  

extreme pressure dependence of t he  thermal conductivity. The m a x i m u m  conductivity 

is more than t h r e e  times that of hydrogen at  t h e  same temperature and some 33 
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t i m e s  t h e  frozen thermal conductivity expected i n  t h e  absence of reaction. The 

inclusion of a dimer equilibrium markedly Improves the agreement between theory 

and experiment i n  t h e  low-pressure region. 

The experimental s tud ies  on nitrogen t e t rox ide  and hydrogen f luo r ide  prove 

t h e  v a l i d i t y  of t h e  theo re t i ca l  expressions for thermal conductivity of react ing 

gases i n  chemical equilibrium. 
2 1  

t o  data for t h e  PC15 2 PC13 + C12 equilibrium . 
Recently t h e  theory has been successful ly  applied 

Thus far we have considered systems where t h e  chemical react ions a r e  so 

rapid that chemical equilibrium prevai ls  l o c a l l y  at a l l  points  i n  t h e  gas mixture. 

Let us now consider t h e  reduction of heat t ransport  caused by reduced reaction 

ra tes .  A general  expression has been derived22 f o r  t h e  apparent "thermal con- 

duc t iv i ty"  of react ing mixtures i n  which a s ing le  react ion proceeds at a f i n i t e  

rate. 

low, it i s  found that heat conduction depends on t h e  geometry and sca l e  of t h e  

In contrast  t o  systems where reaction r a t e s  are e i the r  very high or very 

system and a l s o  t h e  c a t a l y t i c  a c t i v i t y  of t h e  surfaces. 

For a plane p a r a l l e l  p l a t e  geometry, w i t h  one surface noncatalytic and t h e  

other  surface a perfect catalyst ,  t h e  e f f ec t ive  "thermal conductivity" is 

'e% A* = 
t anh  cp 

'f + 'r Cp 

where 

Here is t h e  chemical reaction rate a t  equilibrium (that is t h e  t o t a l  r a t e  

i n  e i t h e r  d i rec t ion  - not t h e  net rate, which is  zero, of course), and 2 is 

t h e  d is tance  between t h e  plates .  For simple systems it can be shown that 
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If t h e  diffusion t i m e  

time 

t i o n  gradients  are washed aut by diffusion and t h e  frozen conductivity is  obtained. 

On t h e  other hand i f  t h e  chemical time is short, t h e  concentration gradients  are 

maintained., cp + 1, tanh  cp/cp + 0, and 

'CDiff is short i n  comparieon with t h e  chemical re laxat ion 

Tchem, cp + 0, t anh  cp/q + 1, and h* + hf. In  other words, t h e  concentra- 

A* - he. 

The theory has been applied t o  the  low-pressure measurements'' on t h e  

N204 2 2N02 

respectively, t h e  computed equilibrium and frozen conduct i v i t  ies. 

t w o  curves are calculat ions of A* for  various react ion rates, assuming neg- 

l i g i b l e  chemical react ion on t h e  surfaces. 

mental data  l i e  on t h e  equilibrium conductivity curve, which is i n  agreement 

with Fig. 8. 

A t  low pressures t h e  dissociat ion of 

system, as shown i n  Fig. 10. The upper and lower dashed curves a r e  

The remaining 

N e a r  atmospheric pressure t h e  experi- 

N2O4 is  a fast bimolecular reaction: 

N204 + M -, 2N02 

The curve marked M = N2 has been calculated 

and D a ~ i d s o n ~ ~  f o r  t h e  dissociat ion of N2O4 

+ M  

by using t h e  rate da ta  of Carrington 

i n  nitrogen. The s o l i d  curve has 

been calculated by assuming t h e  second order rate is sevenfold g rea t e r  when 

undiluted 

experiments of Bauer and Gustavsone4. 

ment is very sa t i s fac tory .  

N204 - NO2 mixtures dissociate;  t h i s  is i n  conformity with t h e  

The agreement between theory and experi- 

THERMAL CONDUCTIVITY OF POLYATOMIC GASES 

It is convenient t o  discuss t h e  thermal conductivity of a polyatomic gas 

i n  terms of i ts  re la t ionship  t o  t h e  v iscos i ty  through t h e  dimensionless r a t i o  

f = M/.rlL;, (14) 

Here M is t h e  molecular welght and (& is t h e  constant volume molar heat 

Capacity. According t o  ul t ras implif ied k ine t i c  theory, f = 1; however, t h e  
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rigorous Chapman-Enskog theory f o r  monatomic gases predicts  that f should be 

very near ly  5/2. T h i s  is due t o  t h e  fact  that t r ans l a t iona l  energy is a function 

of molecular velocity;  the  molecules possessing t h e  most energy are t h e  most 

rapid, have t h e  longest mean free paths, and hence make an enhanced contribution 

t o  t h e  heat t ransport .  Indeed, experiment confirms that f is about 2 . 5  for 

t he  noble gases. This is i l l u s t r a t e d  i n  Fig. 11 where data f o r  argon are shown 

over a temperature from about 100' t o  300' K. 

ments25 that provides a d i r ec t  determination of 

The data  points  represent measure-, 

f a *  

For polyatomic gases, f is l e s s  than 2.5 and tends t o  be smallest when the 

molar heat capacity is la rges t  and or iginates  mostly from t h e  in t e rna l  energy 

modes. Consequently, E u ~ k e n ~ ~  suggested t h a t  t h e  t ransport  of t r ans l a t ion  and 

in t e rna l  energy be  considered separately, and proposed 

fCv = f t r ans  C v,trans + f i n t  Cint 

and Cint are t h e  t r ans l a t iona l  and in t e rna l  contributions t o  t h e  ('v, t rans 

t o t a l  heat capacity 

monatomic gases. However, because there  is l i t t l e  correlat ion between molecular 

ve loc i ty  and in t e rna l  energy, Eucken assumed fint = 1 (the  r e s u l t  of t h e  u l t r a -  

simple theory that neglect s t h e  veloci ty- t ranalat  iona l  energy correlat ion) .  

Cv.) Eucken assumed ftrans = 5/2, by analogy with the 

Ubbelohde2' pointed out that molecules with excited in t e rna l  energy stat es 

may be  regarded as d i f f e ren t  chemical species  and that t h e  flow of in t e rna l  

energy can be considered as energy transport  d u e . t o  diffusion of t he  excited 

states. This concept leads t o  t h e  resu l t  fint = pD/v, so that 

* The method involves measurement of t he  adiabat ic  recovery temperature Tr 
a t t a ined  on a f la t  p l a t e  i n  a high-velocity subsonic gas stream. 
temperature is re la ted  t o  t he  stream temperature 
T t  through t h e  recovery f ac to r  r 
imation f = Y / r 2  where y is t h e  spec i f ic  heat ra t io .  

The recovery 
T and t o t a l  temperature 

(Tr-Ts)/(Tt-T,T. To a very good approx- 
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12 
15 

C = 4 R + & Cint 
fm v 7 

For many r e a l i s t i c  fo rce  lam 

To justify t h i s  m o d i f i e d  Eucken approximation [ Eq. (16)  1 it is t a c i t l y  assumed 

pD/? = 1.3 mer a l a rge  temperature range. 

that i n e l a s t i c  co l l i s ions  are rare. 

t r a n s l a t i o n a l  ve loc i ty  d i s t r ibu t ion  function should not be unduly perturbed, 

T h i s  is necessary i n  order that t h e  

so that t h e  t r a n s l a t i o n a l  conductivity can be r e l a t ed  t o  t h e  v i scos i ty  as i n  

t h e  case of t h e  noble gases. 

c o l l i s i o n s  t o  maintain t h e  in t e rna l  energy states i n  equilibrium with t h e  

On t h e  other hand, there must be enough i n e l a s t i c  

l o c a l  temperature. 
29 Mason and Monchick have recently derived e x p l i c i t  expressions f o r  

and fint from t h e  formal k ine t ic  theory of polyatomic gases. By f t r a n s  

systematical ly  including t e m  involving i n e l a s t i c  co l l i s ions  they  obtained 

t h e  modified Eucken expression as a first approximation, and, as a second 

approximation, an expression dependent on t h e  re laxa t ion  t i m e s  f o r  t h e  various 

i n t e r n a l  degrees of freedom. For nonpolar gases their  r e su l t  may be wr i t ten  

fm Cv = 'h 15 R + Cint - ? (  2 5  - F )  'rot G 
Here Grot 
molecules, $ R f o r  nonlinear molecules) and zrOt 
r o t a t i o n a l  relaxation: 

is t h e  r o t a t i o n a l  contribution t o  t h e  heat capacity ( R  f o r  l i n e a r  

is a collicsion number f o r  

where T~~~ is the ro t a t iona l  relaxation t h e  and zcoll = (lr/4) (v/P) is t h e  

mean t i m e  between co l l i s ions .  

Experimental f value6 f o r  nitrogen25, carbon dioxide 309 31, and hydrogen 25 

are shown i n  Figs. 12, 13, and 14. The upper dashed curves correspond t o  t he  

modified Eucken approximat ion [Eq. (16) 1, while the so l id  l i n e s  have been 
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calculated from Mason and Monchick's expression [Eq. (17)l by assuming the  

temperature-independent co l l i s ion  numbers shown i n  t h e  figures.  The Eucken 

approximations (ftranS = 2.5, fin+, = 1) are shown a8 w e l l  f o r  completeness. 

The data  on nitrogen and carbon dioxide l i e  midway between the  Eucken and 

modified Eucken approximations. In contrast, t h e  hydrogen data  s c a t t e r  about 

t h e  modified Eucken approximation ( Z  = 0 0 ) .  

unique i n  t h a t  exchange between t r ans l a t iona l  and ro t a t iona l  energy is not 

easy; co l l i s ion  numbers of a f e w  hundred are predicted from theory and observed 

experimentally. 

Indeed, t he  hydrogen molecule is  

Collision numbers determined from f ,  or recovery factor,  a r e  compared with 

other  measurements i n  Table I. The values from f are generally i n  accord 

with those obtained by t h e  other techniques, within t he  admittedly rather la rge  

uncer ta in t ies  associated w i t h  such determinations. 

ment , is i n  t he  case of carbon dioxide, where acous t ica l  measurements indicate  

that 16 co l l i s ions  are required f o r  relaxation. 

acoust ic  r e su l t  i s  i n  error; it; is d i f f i c u l t  t o  see any theo re t i ca l  reason w h y  

carbon dioxide should relax so slowly. 

The only ser ious disagree- 

It seems l i k e l y  that t h e  

A c l a s s i c a l  theory f o r  t h e  ro ta t iona l  re laxat ion of molecules with attrac- 

t ive intermolecular forces  (rough spheres and spherocylinders surrounded by 

square wells) has recent ly  been developed by Sather 

of rough spheres t h e  ro t a t iona l  relaxation time is 

and In t h e  c a ~ e  

1 
-1 1 6  na2 ( 41/ma' j = -  

2 
T 

[I + (41/m&) 1 ro t  3 

Here n is t h e  number of molecules per cm3, I is t h e  moment of iner t ia ,  m 

is t h e  mass, a is t h e  diameter of the rough sphere core, whi le  g (a )  is t h e  

value of the r a d i a l  d i s t r ibu t ion  function at a. I n  t h e  low-density l i m i t ,  
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g (d )  = exp (€/kT), where E i s  t h e  depth of t h e  w e l l  at 6. 

Equation (19)  possesses two noteworthy features .  F i r s t ,  s ince t h e  

quant i ty  41/mrt2 is  general ly  l e s s  than 0.2, t h e  relaxat ion t i m e  depends only 

weakly on 6, t h e  posi t ion of t h e  repulsive core. Secondly, s ince the re  is  no 

ro t a t iona l  energy t r ans fe r  accompanying t h e  ve loc i ty  impulse at t h e  outer edge 

of t h e  po ten t i a l  well, t h e  only contribution t o  t h e  ro t a t iona l  re laxat ion stems 

from t h e  impulse at t h e  core. Consequently, t h e  width of t h e  well i s  unimpor- 

tan t ;  i n  fac t ,  Eq. (19)  should apply t o  a Sutherland poten t ia l  with a rough 

core - t h a t  is, a po ten t i a l  with an inve r se  s i x t h  power a t t r a c t i v e  port ion t o  

account f o r  Van der Waals forces. We might hope tha t  t h i s  model would be s u i t -  

ab le  f o r  molecules that are approximately spherical .  

After combining Qs. (l), (la), and (19)  we f ind  

2-l rot - "( 1 2  mb 2 41 (2,2)* ) exp(~ /kT)  

(The term 4I/mo2 i n  t h e  denominator of Eq. (19) has been neglected. ) Some 

experimental r e s u l t s  are compared w i t h  predict ions of Eq. (20) i n  Table 11. 

Methane, carbon te t ra f luor ide ,  and sulfur hexafluoride are approximately 

spherical ,  as shown i n  Fig. 15; f o r  these molecules t h e  agreement between theory 

and experiment seems very good indeed. The mass d i s t r ibu t ion  parameter 

4I/ma R (2 '2)* va r i e s  more than threefold between methane and carbon tetra- 

fluoride; thus  t h e  la rge  co l l i s ion  number of methane is  probably a d i r ec t  

consequence of t h e  molecule's small moment of i ne r t i a .  Note t h a t  t h e  e f fec t  

of a t t r a c t i v e  forces  [exp( E/kT)] is  appreciable and roughly doubles t h e  

t r a n s i t i o n  probabi l i t i es .  

The calculat ions f o r  ethylene and ethane were car r ied  out using average 

moments of i ne r t i a .  The ZiAt values calculated f o r  ethane are i n  close accord 
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with experiment, but i n  t he  case of ethylene t h e  agreement is not so good. 

From Fig. 15 it is  apparent that t h e  ethane molecule is approximately spherical ,  

whereas t h e  ethylene s t ruc ture  i s  de f in i t e ly  less compact and symmetric. 

It appears, then, that t h e  c l a s s i ca l  k ine t i c  theory f o r  a rough spherical  

molecule with a t t r a c t i v e  forces may provide a lower l i m i t  t o  the  co l l i s ion  

probabi l i ty  f o r  ro t a t iona l  relaxat ion, Z-l f o r  nonlinear molecules. Molecules 

such as CH4, CF4, SFg, and C2Hg are reasonably represented by t h i s  model, whereas 
rot '  

less symmetric molecules such a s  C2H4 have l a rge  t r a n s i t i o n  probabi l i t ies ,  

shor te r  re laxat ion times. 

or  

A s  a matter of f a c t  t h e  theory of Brout 31J 33 f o r  t h e  

relaxat ion of diatomic molecules such a s  nitrogen and oxygen a l so  indicates  

t h a t  t h e  deviation of t he  intermolecular potent i a l  from spherical  symet ry  i s  

an important paramet er. 

Thus we conclude that Mason and Monchick's approximate theory f o r  t h e  heat 

conductivity of polyatomic gases is at least qualitativelycorrect. Furthermore, 

t h e  following f ac to r s  seem of profound importance i n  determining ro t a t iona l  

re laxat ion times f o r  nonpolar gases: 

2 (1) The mass d i s t r ibu t ion  (characterized by 

( 2 )  The s t rength  of t h e  intermolecular a t t r a c t i v e  forces (characterized 

4I/ma ) 

by E/kT) 

(3) The deviation of the molecular force  f i e l d  from spherical  symmetry 

CONCLUDING REMARKS 

In t h e  past  decade t h e r e  have been subs t an t i a l  advances i n  methods f o r  

calculat ing t h e  t ransport  propert ies  of gases and gas mixtures. 

i n t eg ra l s  have been calculated for a considerable va r i e ty  of r e a l i s t i c  po ten t i a l  

energy functions. 

Collision 

The effects of chemical react ion and chemical rate phenomena 
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seem t o  be w e l l  understood, and the re  is  gra t i fy ing  accord between theory and 

experiment. Finally,  t h e  theory of Mason and Monchick" shows great  promise 

as a descr ipt ion of t h e  behavior of polyatomic gases. 

What remains f o r  t h e  fu ture?  F i rs t ,  it i s  t o  be hoped t h a t  t h e  relaxat ion 

theory of Mason and Monchick w i l l  be extended t o  gas mixtures, and t h a t  t he re  

w i l l  be  fu r the r  t e s t i n g  of t h e  theory, both for pure gases and gas mixtures. 

There i s  room f o r  more work on t h e  heat conductivity of polar gases. The con- 

d u c t i v i t i e s  of highly polar  gases seem anomalously l o w  i n  r e l a t ion  t o  t h e i r  

v i scos i ty  ( i n  other  words, f values a re  s m a l l ) ,  and it has been suggested 29 

that t h i s  e f fec t  i s  l a rge ly  due t o  a resonant exchange of ro t a t iona l  quanta, 

presumed probable on grazing se l f -co l l i s ions  of polar molecules. However, 

r e s u l t s  of experiments designed t o  t e s t  t h i s  notion34 have been somewhat 

ambiguous. Finally,  t h e o r e t i c a l  studies on t h e  k ine t i c  theory of nonspherical 

molecules should be encouraged. 

REFERENCES 

1. J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory -- of Gases 

- and Liquids, Wiley, New York (1954). 

2. Reference 1, p. 527. 

3. T. Kihara and M Kotani, Proc. Phys. Math. SOC. Japan - 24, 76 (1942). 

4. J. de Boer and J. Van Krankendonk, Physica - 14, 442 (1948). 

5. J. 0. Hirschfelder, R. B. Bird, and E. L. Spotz, J, Chem. Phys. - 16, 968 (1948). 

6. J. S. Rowlinson, J. Chem. Phys. - 1 7 ,  101 (1949). 

7. E. A. Mason, J. Chem. Phys. - 22, 169 (1954). 

8. E. A. Mason, and W. E. Rice, J. Chem. Phys. - 22, 843 (1954). 

9. L. Monchick and E. A. Mason, J. Chem. Phys. - 35, 1676 (1961). 

10. S. E. Love11 and J. 0. Hirschfelder, Theoret ical  Chemistry Laboratory, 

University of Wisconsin Rept. WIS-AF-21, (June 1962); a l s o  p r iva t e  

communication from S. E. W e l l .  



11. L. 

1 7  

lonchick, Phys. F lu ids  2, 695 (1959). 

12. R. L. Liboff, Phys. F lu ids  2, 40 (1959). 

13. E. A. Mason and H. W. Schamp, Jr., Ann. Phys., New York 4, 233 (1958 

14. T. Kihara, M. H. Taylor, and J. 0. Hirschfelder,  Phys. F lu ids  3, 715 

- 
- 

- 
- 

I 
15. R. S. Brokaw, Phys. Fluids  4, 944 (1961). 

16. J. N. But ler  and R. S. Brokaw, J. Chem. Phys. 26, 1636 (1957 

17.  R. S. Brokaw, J. Chem. Phys. 32, 1005 (1960). 

18. K. P. Coffin and C. O ' N e a l ,  Jr., NACA TN 4209 (1958). 

19. R. S. Brokaw, Planetary Space Sc i .  3, 238 (1961) .  

20. E. U. Franck and W, Spalthoff,  N a t u r w i s s ,  40, 580 (1953). 

- 
- 

- 

' 

- 

- 
I 21. P. K. Chakraborti, J. Chem. Phys. 38, 575 (1963). - 

22. R. S. Brokaw, J. Chem. Phys. 35, 1569 (1961). - 

(1960). 

23. T. Carrington and N. Davidson, J. Phys. Chem. 57, 418 (1953). 

24. S. H. Bauer and M. R. Gustavson, Discussions Faraday SOC. 17, 69 (1954). 

25. C. O ' N e a l ,  Jr. and R. S. Brokaw, Phys. F lu ids  5, 567 (1962). 

- 
- 

- 
26. E. R. G. Eckert and T. F. I rvine,  Jr., J. Appl. Mech. 24, 25 (1957). 

27. A. Eucken, Physik Z. 14, 324 (1913). 

28. A. R. Ubbelohde, J. Chem. Phys. 3, 219 (1935). 

29. E. A. Mason and L. Monchick, J. Chem. Phys. 36, 1622 (1962). 

30. J. L. Novotny and T. F. Irvine,  Jr., J. Heat Transfer  83, 125 (1.961). 

31. C. O'Neal, Jr., and R. S. Brokaw, Phys. F lu ids  6, 1675 (1963). 

32. N. F. Sather and J. S. Dahler, J. Chem. Phys. 37, 1947 (1962). 

33. R. Brout, J. Chem. Phys. 22, 1189 (1954). 

34. C. E. Baker and R. S. Brokaw, J. Chem. Phys. 40, 1523 (1964). 

- 
- 

- 

- 
- 

- 

- 
- 

- 



e '  . .  
e .  

- 
Gas 

N2 

O 2  

H2 

c02 

CH4 
a 

18 

31 
TABLE 1, - COMPARISON OF COLLISION NUMBERS FOR ROTATIONAL RELAXATION 

f 
:determined 

from 
recovery 
f a c t o r  ) 

7 

12 

Large 

2.4 

9 

Acoust ical  

5.3J6Y4-6 

2-4,4.1,12 
14,12-30 

240-360 

16 

14-17 

LOW- 
p r e s  s u r e  
t hemal 
c onduc - 
t i v i t y  

20 

300 

Shock 
thickness 

5.5 

7 

>150 

Impact 
t ube  

<7, <14 

160,310 

T A B U  11. - EXPEWNENTAL DATA FOR SOME NONLINEAR MOLECULES 

COMPARED WITH ROUGH SPHERE THEORY 

I z expt 

Methane 

0.05 

1 . 7  

.11 

.11 

9 

Carbon 
t et raf luor ide  

0.16 

1 . 6  

.33 

.33 

3.0 

Su l fu r  
hexafluoride 

0.14 

2.1 

.38 

.36 

2.8 

Ethane 

0.09 

2 . 1  

.25 

25 

4 

Ethylene 

0.08 

2.2 

.23  

.42 

2 .4  
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